흐름 반응기에서 공간적으로 분해된 온도 프로파일로부터 반응 동역학과 엔탈피의 동시 특성화 및 적용

Jun-ichi Ogawa *1 Ryosuke Nakamura *2

흐름 반응기에서 반응 용액이 채널을 통과할 때 반응이 진행됩니다. 따라서, 정상 상태에서, 흐름 채널의 관찰 지점은 항상 동일한 반응 시간이 경과한 반응 지점입니다. 따라서, 흐름 채널의 여러 다른 지점에서 반응 용액을 정적으로 관찰함으로써 반응과 관련된 역학을 측정할 수 있습니다. 이 기능을 활용하여, 열 유체 분석 공식을 기반으로 반응 중 흐름 채널의 온도 분포에 대한 물리적 모델을 사용하는 소프트 센서를 개발했습니다. 본 논문에서는 소프트 센서로 동시에 측정되는 깁스 활성화 에너지 (ΔG \dagger)와 반응 엔탈피 (ΔH)의 예를 제시하고, 자체 데이터를 확장하여 고처리량 반응 분석 및 재료 정보학에 대한 적용을 소개합니다.

소개

학 공정 개발 시 반응 동역학과 반응열을 이해하면 안전한 조건에서 최적의 작동이 가능합니다. 하지만, 반응 속도를 이해하기 위해, 반응 속도 방정식에 따라 반응 중에 반복 샘플링 및 정량 분석을 수행해야 하므로 많은 노력이 필요합니다 (그림 1-a). 최근, 흐름 반응기를 사용한 동역학 분석 방법이 개발되었습니다⁽¹⁾⁻⁽⁴⁾. 마찬가지로, 흐름 반응기와 결합된 간단한 구성은 안전하고 고처리량 측정을 위한 반응열 분석에서 주목을 끌고 있습니다⁽⁵⁾⁽⁶⁾.

이는 플러그 흐름 정상 상태 조건의 흐름 반응기에서 흐름 경로의 모든 관찰 지점이 항상 동일한 반응 시간이 경과한 반응 지점이 된다는 특징을 효과적으로 활용합니다. 따라서, 반응 속도를 결정하는 파라미터인 깁스 활성화 에너지 (ΔG \pm)와 반응열에 초점을 맞춘 흐름 경로 내 온도 상승의 크기와 형태부터 반응열 자체인 반응 엔탈피

를 동시에 측정할 수 있는 물리적 모델을 기반으로 한 소프트 센서를

개발했습니다 (그림 1-b)⁽⁷⁾. 이 방법은 흐름 경로의 온도를 정적 관찰

만 필요로 하며, 흐름 반응기의 반응이 정상 상태에 도달하는 즉시 측 정 결과를 얻을 수 있습니다. 이 방법은 정량화를 위한 보정 곡선을

생성하는 번거로운 작업은 물론, 반응열 측정을 위한 대기 시간을 제

거하여 간단하고 처리량이 많은 측정을 실현합니다.

그림1 (a) 샘플링 방법 (b) 제안 방법

Position of the reactor

⁽a) (b) Temperature measurements
Samplings

^{*1} Life Research & Development Department, Innovation Center, Marketing Headquarters

^{*2} Design Department, Innovation Center, Marketing Headquarters

최근에는 재료 정보학을 활용하여 습식 실험 자체를 줄임으로 써 효율성을 개선하려는 노력이 있었습니다. 이러한 모델을 구축하는 데 사용할 수 있는 공공 및 상업용 데이터베이스의 개선도 추진되고 있습니다.

하지만, 이는 연구원이 수행하는 실험이며 주관적으로 수집된 데이터를 포함하며, 관심 영역의 데이터 보강이 적거나 서로 다른 장비로 측정된 데이터의 혼합으로 인해 데이터를 활용하기 어려운 경우가 있을 수 있습니다⁽⁸⁾. 따라서, 통제된 실험 조건 하에서의 데이터 획득은 여전히 재료 특성의 해석과 예측에 중요한 역할을 합니다. 예를 들어, 이 글은 서로 다른 측쇄 구조를 가진 여러 아미노산을 사용하여 고처리량 방식으로 얻을 수 있는 반응 시간 차이에 대한 기질 차이 영향을 ΔG^{\dagger} 값 차이로 보여주기 위해 펩타이드 합성에 초점을 맞추었습니다. 또한 자체적으로 얻은 ΔG^{\dagger} 값 측정 데이터를 기반으로 한 재료 정보학을 사용하여 ΔG^{\dagger} 값에 대한 예측 모델을 생성하고 평가했습니다.

측정 원리 및 실험 설정

반응 속도와 반응 엔탈피는 반응 중 발생하는 열의 시간 변화를 흐름 반응기 내부의 온도 분포로 캡처하여 동시에 측정할 수 있습니다. 반응열로 인한 흐름 반응기 내부 흐름 경로의 종방향에 따른 온도 분포는 반응 속도가 증가함에 따라 더 가파르게 되고, 반대로, 시간이 갈수록 온도 변화는 반응 속도가 감소함에 따라 서서히 진행됩니다. 또한, 반응 엔탈피는 온도 분포의 면적과 명확하게 상관관계가 있습니다. 우리는 다음 관계를 공식화하여 제안된 방법을 실현했습니다."

열 유체 분석 방정식

우리는 정상 상태 에너지 보존 방정식으로부터 흐름 반응기 내부의 온도 분포를 나타내는 열 유체 해석 방정식을 도출하여 공식화했습니다⁽⁹⁾. 밀도, 비열, 열 전달 계수와 같은 물리적 용액 특성이 반응 전후에 일정하고 흐름 반응기의 외부 온도가 균일하고 일정하다고 가정하면, 흐름 경로의 임의의 위치 x에서의 온도 변화는 다음과 같이 표현됩니다:

$$\rho c_{p} \Delta V u \frac{dT(x)}{dx} = \dot{q}(x) \Delta V - U \Delta A \{T - T_{B}\}, \quad (1)$$

여기서 ρ 은 용액 밀도, c_p 는 비열 용량, u는 유속, T(x)는 x에서 의 온도, $\dot{q}(x)$ 는 x에서의 반응 엔탈피, T_B 는 항온조의 온도, U는 전체 열 전달 계수, ΔV 는 단위 부피, ΔA 는 ΔV 의 열 전달 면적입니다.

이 미분방정식을 풀기 위해
$$\dot{q}\left(x\right)=-\Delta H \frac{\mathrm{d} \left[\mathrm{P}\right]}{\mathrm{d}t}$$
이라는 사실을

사용하고 아미드화 반응을 검증 대상으로 선택하여, 아미드화 반응을 2차 반응으로 간주함으로써, 다음과 같이 표현할 수 있는 열 유체 해석 방정식을 도출하기 위해 아이링 방정식을 사용했습니다.

$$\begin{split} T\left(x\right) &= T_{\rm B} + \left(T_{\rm inlet} - T_{\rm B}\right)e^{-ax} \\ &- \frac{1}{\rho c_{\rm u} u} e^{-ax} \int_{0}^{x} e^{ax} \Delta H \, \frac{k_{\rm B} T}{h} [{\rm A}][{\rm B}] {\rm exp} \! \left(-\frac{\Delta G^{\ddagger}}{R T}\right) \! {\rm d}x, \end{split} \tag{2}$$

여기서 $k_{\rm B}$ 는 볼츠만 상수, R은 기체 상수, h는 플랑크 상수, [A]는 반응물 A의 몰 농도, [B]는 반응물 B의 몰 농도입니다. 여기서 구한 방정식은 소프트 센서로 사용되며, 변수 Δ G† 및 Δ H는 방정식을 측정된 온도 분포에 맞추어 결정할 수 있습니다. $T_{\rm inlet}$ 은 반응 전에 충분한 열 교환을 통해 $T_{\rm B}$ 와 동일한 것으로 간주할 수 있습니다. 파라미터 a는 $a=\frac{4U}{\rho c_{\rm p} d_{\rm h} u}$, 로 계산되며, 여기서 d는 흐름 경로 직경입니다.

온도 센서 장착 흐름 반응기

소프트 센서 적용을 위한 온도 분포를 측정하기 위해, 흐름 경로에 온도 센서가 장착된 흐름 반응기를 준비했습니다 (그림 2). 이 반응기는 내경 0.80mm의 PTFE 튜브, 내경 0.25mm의 스테인리스 스틸 T-믹서 (Sanko Seiki Kogyo), 1등급 (± 0.5 °C) T형 열전대와 직경 0.5mm (Hayashi Denko)의 스테인리스강 지그로 구성되며, 그림 2에 표시된 화살표 방향으로 용액이 흐릅니다.

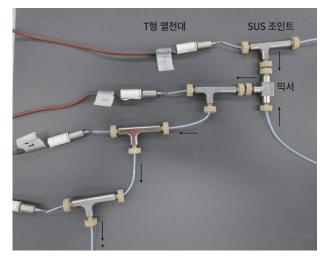


그림2 온도 센서가 장착된 흐름 반응기

우리는 이 온도 센서가 장착된 흐름 반응기를 사용하여 측정된 온도 분포에 식 (2)를 맞추어 ΔG^{\dagger} 및 ΔH 값을 얻었습니다. 우리는 이전에 이러한 방식으로 얻은 ΔG^{\dagger} 값이 각 반응 시간에서 샘플링 및 정량화에 대한 기존 방법으로 도출된 값과 잘 일치한다고 발표했습니다 $^{(7)}$.

자동 합성 시스템과의 결합

고처리량 방식으로 반응 온도 분포를 얻기 위해, 온도 센서가 장 착된 흐름 반응기와 FlowSyn Auto-LF (Uniqsis Ltd.) 자동 합성 시스 템을 결합했습니다 (그림 3) 반응 필드 온도를 제어하기에 충분한 열 교환 특성을 가진 항온조에 이 반응기를 담갔습니다 (그림 3의 빨간색 프레임). 이 실험에 사용된 시약을 최소화하기 위해 자동 합성 시스템에 설치된 샘플 루프 메커니즘과 온도 측정을 위한 GP10 페이퍼리스 레코더 (Yokogawa 제품)를 활용했습니다.

그림3 온도 센서가 장착된 흐름 반응기와 결합된 자동 신시사이저

펩타이드 합성에 대한 적용

우리는 각 아미노산에 대한 펩타이드 합성에서 아미드화 반응의 ΔG^{\dagger} 값을 측정했습니다. 아미드화 반응 속도는 상호 반응하는 아미노산의 유형에 따라 달라지는 것으로 알려져 있습니다. 이 연구에서, 글리신 (Gly), 페닐알라닌 (Phe), 알라닌 (Ala), N ω - ((2,2,4,6,7-펜타메틸-2,3-다이하이드로벤조퓨란-5-근)술포닐)-L-아르기닌 (Arg(Pbf)), 발린 (Val) 및 이소류신 (Ile)에 대한 검증을 수행했습니다. 특히, Val과 Ile은 부피가 큰 측쇄가 있고 보다 느린 반응 속도를 나타내는 경향이 있습니다(10)(11). 따라서, 본 섹션에서는 소프트 센서가 이러한 경향을 캡처하는지 확인한 다음, 반응 조건을 설정하고 마지막으로 측정한 데이터에서 측정된 ΔG^{\dagger} 값을 적용하는 예를 설명합니다.

반응 조건

펩타이드의 화학적 합성은 일반적으로 응축제가 먼저 카르복실기(C-말단)를 활성화한 다음, 다른 아미노산의 아미노기 (N-말단)를 이 활성화 부위와 반응시키는 2단계 반응 방법을 수반합니다. 따라서, 순수하게 아미드화 반응의 열로 인한 흐름 경로의 온도 증가를 측정하기 위해 이 두 반응을 분리했습니다. 먼저, 그림 4에 표시된 믹서 1과 믹서 2 사이의 흐름 경로에서 아민으로 사용된 기질을 응축제로 충분히 활성화한 후에 믹서 2에 유입시키고 다운스트림 흐름 경로에서 아미드화 반응을 수행했습니다. 용매로 N, N-디메틸포름아미드를 선택하고 응축제로 에틸 2-시아노-2-((디메틸미니오)(모르폴리노)메틸옥시이미노)아세테이트 핵사플루오로인산염 (COMU)을 선택했습니다. 9-플루오레닐메틸옥시카르보닐 (Fmoc-AA-OH)로 보호되는 N-말단이 있는 아미노산과 임의의 아미노산을 나타내는 -AA-가 있는 메틸 에스테르기 (H-AA-OMe)로 보호되는 C-말단

이 있는 아미노산 염산염을 사용했습니다. 반응 온도는 40℃였으며, 흐름 경로의 네 개 지점에서 반응 온도를 구하기 위해 T형 열전대를 사용했습니다. 응축제에 의한 Fmoc-AA-OH의 활성화 반응에 의해 발생된 열이 아미드화 반응에서 얻은 열에 미치는 영향을 제거하기 위해 열 제거에 충분한 시간을 할애했습니다.

그림 4에 나타낸 바와 같이, 펌프 1은 2.0mL/분의 유속으로 사전 혼합된 Fmoc-AA-OH (0.26몰/L)와 COMU(0.28몰/L) 용액을 흐름 경로에 유입시킵니다. 펌프 2는 활성화를 위해 N,N-디이소프로필에털아민 (DIEA)(1.33몰/L) 용액으로 준비한 다음, 응축제에 의한 활성화 반응이 DIEA가 없을 때 진행되지 않는다는 이전 확인에 따라 1.2mL/분의 유속으로 설정합니다. 활성화 반응은 믹서 1에서 DIEA 용액과 혼합한 직후에 진행됩니다. 펌프 3은 H-AA-OMe용액 (0.2몰/L)과 H-AA-Ome 및 DIEA의 등몰 혼합물을 제공하여 2.0mL/분의 유속으로 설정했습니다. 믹서 2는 활성화된 Fmoc-AA-OH와 H-AA-OMe를 혼합하고 아미드화 반응을 진행했습니다. 반응 시간에 따라 변하는 온도 분포는 아미드화 반응이 발생하는 흐름 경로에 설치된 열전대 T1-T4를 사용하여 측정했습니다.

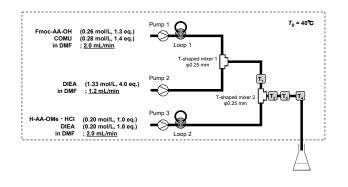


그림4 흐름 반응기 구성 및 반응 조건

아미노산 측쇄 구조와 반응성 사이의 관계 검증

표 1은 열에 표시된 H-AA-OME와 행에 표시된 Fmoc-AA-OH가 서로 반응할 때 아미드화 반응의 ΔG^{\dagger} 값을 보여줍니다. Fmoc-AA-OH의 차이점에 초점을 맞추면 다른 Fmoc-AA-OH에 비해 부피가 큰 측쇄를 가진 Fmoc-Val-OH 및 Fmoc-Ile-OH를 사용할 때 ΔG^{\dagger} 값이 더 높은 경향이 있음을 확인했습니다. ΔG^{\dagger} 값이 높을수록 아미드화 반응에 더 많은 에너지가 필요하고 반응속도가 상대적으로 느리다는 것을 의미합니다. H-Phe-OME의 경우에 초점을 맞추면, Fmoc-Gly-OH와 Fmoc-Val-OH 사이에서 5.9kJ/몰의 더 높은 ΔG^{\dagger} 값을, Fmoc-Gly-OH와 Fmoc-Ile-OH사이에서 8.2kJ/몰의 더 높은 값을 보여줍니다. 반응속도로 환산하면, ΔG^{\dagger} 장에서, 이는 각각 ΔG^{\dagger} 장에 다음 사용하고 반응을 늦추는 경향과 일치합니다.

Val과 IIe을 H-AA-OMe로 사용하면 Gly와 Ala를 사용할 때보다 ΔG^{\dagger} 값이 더 커지고 반응 시간이 느려졌습니다. 마찬가지로, Arg(Pbf)와 Phe를 H-AA-OME로 사용하면 ΔG^{\dagger} 값이 더 커지고 반응 시간이 느려졌습니다. 특히, Phe를 H-AA-OME로 사용한 결과, 사용된 Fmoc-AA-OH에 관계없이 가장 느린 반응 속도를 나타내는 가장 큰 ΔG^{\dagger} 값이 생성되었습니다. 이 결과는 측쇄 벌키성 지표인 Es 값 $^{(12)}$ 으로 설명할 수 없었기 때문에 흥미로웠습니다.

표 1 아미드화 반응을 위한 ΔG‡ (kJ/몰)

	H-Gly-OMe	H-IIe-OMe	H-Val-OMe	H-Ala-OMe	H-Arg(Pbf)- OMe	H-Phe-OMe
Fmoc-Gly-OH	65.1	65.5	65.7	65.9	66.1	66.2
Fmoc-Phe-OH	65.4	66.1	66.4	66.0	66.7	67.1
Fmoc-Ala-OH	65.5	66.3	66.5	65.2	66.7	67.2
Fmoc-Arg(Pbf)-OH	65.9	66.6	67.0	65.9	67.6	67.8
Fmoc-Val-OH	66.0	69.6	70.2	68.6	70.8	72.1
Fmoc-Ile-OH	66.4	70.7	71.4	69.0	72.2	74.4

측정값을 사용한 반응 조건 설정에 대한 적용

다음은 반응 조건 설정을 위한 지수로 측정된 ΔG^{\dagger} 값을 활용하는 예를 보여줍니다. 측정된 ΔG^{\dagger} 값은 2차 반응에 대한 값으로 가정되며, 속도 방정식은 다음과 같이 표현할 수 있습니다:

$$\frac{\mathrm{d}[P]}{\mathrm{d}t} = -k[A][B] = -\frac{k_{\mathrm{B}}T}{h} \exp\left(-\frac{\Delta G^{\ddagger}}{RT}\right)[A][B], \quad (3)$$

여기서 [P]는 원하는 제품 P의 몰 농도이고 k는 반응 속도 상수입니다. 이 방정식은 원하는 반응 시간 내에 반응을 완료하기 위해 반응 시간과 온도를 설정하는 데 사용할 수 있습니다.

그림 5는 방정식 (3)을 변환하고 [A] = 0.26 몰/L, [B] = 0.20 몰/L, 그리고 △G = 75 kJ/몰 값을 사용하여 생성된 원하는 제품 수율의 시간 및 온도 의존성을 보여주는 등고선 플롯입니다. 그림에 서 세로축은 온도를 나타내고 가로축은 시간을 나타냅니다. 짙은 보 라색이 더 높은 수율을 나타내는 색상 강도는 수율의 변화를 나타냅 니다. 플롯은 각 온도에서 시간이 지나면서 수율이 어떻게 변하는지 를 보여줍니다. 예를 들어, 실험에 사용된 온도인 40℃에서 반응이 완 료되는 데 필요한 실제 시간은 약 2초라고 쉽게 추정할 수 있습니다 (그림 5, 녹색 원). 지정된 시간 내에 반응이 완료되도록 반응 속도를 높이고 싶다면, 충분히 짙은 보라색 영역에 도달하도록 더 높은 온도 를 설정해야 합니다. 예를 들어, 1초 만에 반응을 완료하려면 온도를 약 60℃로 설정해야 한다고 추정할 수 있습니다 (그림 5, 적색 원). 온 도를 설정할 때, △G[†] 값은 온도 의존성이 있다는 점에 유의하십시 오. 상이한 반응 온도에서 반응 속도 상수를 분석하는 아이링 플롯은 이러한 온도 의존성을 신중하게 고려하는 데 사용할 수 있습니다. 이 러한 분석은 반응 필드 온도를 정밀하게 제어할 수 있는 흐름 반응기 를 결합하는 이 방법을 사용하여 고처리량 방식으로 수행할 수도 있 습니다.

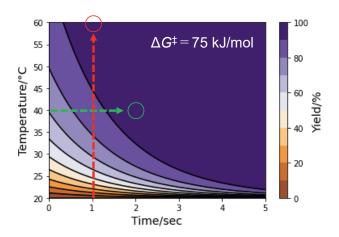


그림5 수율의 시간 및 온도 의존성을 보여주는 등고선 플롯

재료 정보학을 사용한 예측

재료 정보학을 적용하여, △G‡ 예측 모델을 구축하기 위해 36 가지 조건 하에서 소프트 센서를 사용한 측정을 통해 생성된 △G‡ 측정 데이터를 사용했습니다. 모델링을 통해 실험을 수행하지 않고도 각 기질로 아미드화에 필요한 반응 시간을 미리 추정할 수 있습니다. 이는 반응 타당성에 대한 실질적인 판단을 내리고, 실험적 검증의 우선순위를 설정하며, 여러 후보 반응 결합이 있을 때 선별할 수 있도록합니다

 ΔG^{\dagger} 예측을 위한 다른 방법은 밀도 범함수 이론 (DFT)에 기반한 계산과 같은 일차 원리 계산을 사용하는 것이 포함됩니다 (13)(14). 하지만, 관심 반응의 전이 상태 구조를 결정해야 하며, 오늘날의 계산 능력이 극적으로 개선되더라도 이를 수행하려면 여전히 막대한 계산 비용이 필요하므로 각 반응 조건에 대한 DFT 계산에 의한 예측이 비현실적입니다. 용매 효과는 기질과 직접 반응하지는 않지만 ΔG^{\dagger} 값에 영향을 미치는 추가 요인입니다 (15). 용매 효과는 분극 가능한 연속체 모델로서 DFT 계산에 비교적 쉽게 통합되지만, 용매 분자가 더직접적으로 작용하는 반응 시스템에서는 결과가 실제와 다를 수 있습니다. 반면, 소프트 센서를 통해 실제로 측정한 ΔG^{\dagger} 값은 이미 반응 시스템에 존재하는 분자의 영향이 포함되어 있습니다. 이러한 값으로 구축된 모델은 용매 분자의 영향이 포함되어 실제 측정값에 가까운 ΔG^{\dagger} 값을 예측할 것으로 예상됩니다.

교육 데이터 생성

우리는 Fmoc-AA-OH 및 H-AA-OMe의 구조 정보에서 ΔG 부 값을 예측하는 모델을 구축했습니다. 분자 구조를 예측 방정식에 대입하기 위해, 먼저 문자열로 나타내는 표기법인 $SMILES^{(16)}$ 로 분자 구조를 변환한 다음, $RDKit^{(17)}$ 을 사용하여 분자 기술자로 분자 구조를 숫자로 나타내었습니다 표현했습니다. (그림 6).

그림6 분자 구조에서 기술자로 변환

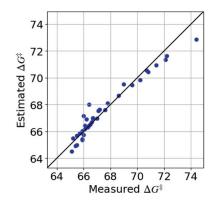


그림7 모든 데이터를 학습할 때 ΔG‡ 값의 예측

모델의 예측 능력 평가

우리는 ΔG^{\dagger} 값에 대한 GPR 모델의 예측 능력을 평가하기 위해 Leave-One-Out (리브 원 아웃) 교차 검증 (LOOCV) 방법을 사용했습니다. LOOCV는 데이터에서 하나의 샘플만 테스트 데이터로 사용하고 나머지는 교육용 데이터로 사용하여 모든 조합에 검증을 적용합니다. 즉, N개의 데이터가 주어지면 각 데이터 값을 테스트 데이터로 사용하여 N번 검증이 수행됩니다.

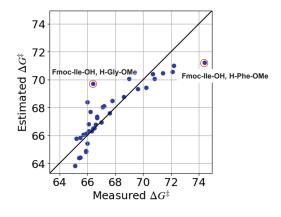


그림8 Leave-One-Out 방법을 사용한 △G‡ 값 예

그림 8은 이 평가 방법으로 얻은 모델 결과를 보여줍니다. 결정 계수 R2 값은 미지의 조건에서도 ΔG^{\dagger} 값을 예측할 수 있음을 나타내는 0.759였습니다.

우리는 측정값과 예측값이 벗어나는 두 지점 (그림 8의 적색원)을 고려했으며, 이는 결정 계수를 낮추는 요인입니다. 첫 번째 지점은 Fmoc-Ile-OH와 H-Phe-OMe의 조합으로, 측정값보다 낮은 값이 예측되었습니다. 이전 섹션 ("아미노산 측쇄 구조와 반응성 사이의 관계 검증")에서 언급한 바와 같이, 벌크성은 이를 설명할 수 없습니다. Phe에 초점을 맞추면, 측쇄에는 페닐기가 있으며, 페닐기의전자가 풍부한 π 결합 시스템은 반응성이 낮은 방향으로 약간의 전자 효과를 발휘했을 수 있습니다. 반면에, 두 번째 지점은 측정값보다 높은 것으로 추정된 Fmoc-Ile-OH와 H-Gly-OMe의 조합입니다. 글리에 초점을 맞추면, 측쇄가 없으며 어떤 식으로든 벌크성에영향을 받지 않아야 합니다. 따라서, 이 모델링에 '벌크성'을 포함시키면 벌크성 정도가 극히 작거나 전자 영향이 반응성에 원인이 되는시스템에서 예측 결과와 실제 측정이 벗어나는 경향을 초래할 수 있습니다. 이러한 시스템을 교육용 데이터로 추가하면 모델의 예측 정확도가 더욱 향상될 수 있습니다.

결론

유동 반응기 내부의 엔탈피로 인한 내부 온도 분포를 측정하여 반응 속도 지표인 △G † 와 반응 엔탈피 (△H)를 동시에 측정할 수 있는 소프트 센서를 개발했습니다. 펩타이드 합성을 예로 들어, 아미 노산 측쇄가 아미드화 반응 속도에 미치는 영향을 측정하기 위해 이 소프트 센서를 사용했으며, 아미드화 반응의 ΔG^{\dagger} 가 큰 값을 나타 내고 부피가 큰 측쇄를 가진 아미노산을 사용할 때 반응이 더 느려 지는 경향이 있음을 확인했습니다. 재료 정보학을 적용함에 따라, 우 리는 ΔG^{\dagger} 값에 대한 예측 모델을 구축하기 위해 측정한 데이터도 사용했으며, 여기에서 측정한 데이터 세트와 같은 작은 데이터 세트 에서도 미지의 조건에 대한 예측 능력을 가진 모델을 얻을 수 있음 을 보여주었습니다. 이 소프트 센서는 유동 반응기의 온도 변화가 크 고 각종 알려진 물리적 특성 값이 있는 영역의 온도 분포 측정에서만 △G[†] 및 △H 값을 측정할 수 있습니다. 따라서 제품 정량화가 필 요하지 않거나 반응이 완료될 때까지 기다리지 않고도 고처리량 측 정을 실현합니다. 데이터 수집은 재료 정보학의 주요 과제 중 하나 로 간주됩니다. 각종 데이터베이스에서 관심 영역의 데이터는 충분 히 사용할 수 없을 수도 있으며, 이를 사용하여 얻은 모델은 정확도 가 충분하지 않을 수도 있습니다. 고처리량의 자체 데이터 수집을 가 능하게 하는 제시된 방법은 재료 정보학의 활용을 가속화할 수 있으 며 모델 예측의 정확도 향상을 위한 솔루션을 제공할 수 있습니다.

이 글은 데이터 수집에서 모델 구축에 이르는 일련의 방법에 대한 일례를 제시했습니다. 우리는 고객의 연구 개발 노력에서 더욱 효율성을 실현하기 위해 이 방법을 지속적으로 개발하고 검증할 것입니다.

감사의 말

측정 데이터 모델링에는 MI-6 Co., Ltd.와의 서비스 계약 결과 가 포함되며, 이에 대해 감사를 표합니다.

참고문헌

- T. Durand, C. Henry, et al., "Thermolysis of 1,3-Dioxin-4-Ones: Fast Generation of Kinetic Data Using in-Line Analysis under Flow," React. Chem. Eng., Vol. 1, 2016, pp. 82-89
- (2) K. C. Aroh, K. F. Jensen, "Efficient Kinetic Experiments in Continuous Flow Microreactors," React. Chem. Eng., Vol. 3, 2018, pp. 94-101
- (3) A. Gioiello, A. Piccinno, et al., "The Medicinal Chemistry in the Era of Machines and Automation: Recent Advances in Continuous Flow Technology," J. Med. Chem., Vol. 63, 2020, pp. 6624-6647
- (4) M. A. Morin, W. Zhang, et al., "Sampling and Analysis in Flow: The Keys to Smarter, More Controllable, and Sustainable Fine-Chemical Manufacturing," Angew. Chem., Int. Ed., Vol. 60, 2021, pp. 20606-20626
- (5) C. Zhang, J. Zhang, et al., "Kinetics Determination of Fast Exothermic Reactions with Infrared Thermography in a Microreactor," J Flow Chem., Vol. 10, 2020, pp. 219-226
- (6) M. Hosoya, S. Nishijima, et al., "Management of the Heat of Reaction under Continuous Flow Conditions using In-Line Monitoring Technologies," Organic Process Research & Development, Vol. 24, No. 6, 2020, pp. 1095-1103
- (7) Y. Imamura, J. Ogawa, et al., "Simultaneous Characterization of Reaction Kinetics and Enthalpy by Calorimetry Based on Spatially Resolved Temperature Profile in Flow Reactors," Org. Process Res. Dev., Vol. 27, No. 3, 2023, pp. 470-476
- (8) P. Xu, X. Ji, et al., "Small Data Machine Learning in Materials

- Science," npj Comput Mater, Vol. 9, 2023, Article number 42
- (9) G. Karniadakis, A. Beskok, et al., Microflows and Nanoflows: Fundamentals and Simulation, In Interdisciplinary Applied Mathematics; Springer, 2005
- (10) R. Roodbeen, S. L. Pedersen, et al., "Microwave Heating in the Solid-Phase Synthesis of N-Methylated Peptides: When Is Room Temperature Better?" Eur. J. Org. Chem., 2012, pp. 7106-7111
- (11) Y. Otake, Y. Shibata, et al., "N-Methylated Peptide Synthesis via Generation of an Acyl N-Methylimidazolium Cation Accelerated by a Brønsted Acid," Angew. Chem. Int. Ed., Vol. 59, No. 31, 2020, pp. 12925-12930
- (12) M. Akamatsu, "QSAR Parameters and Their Applications," Journal of Pesticide Science, Vol. 38, No. 2, 2013, pp. 195-203 (in Japanese)
- (13) H. Nakano, K. Nakayama, et al., "Transition State Barrier Height for the Reaction H2CO → H2+CO Studied by Multireference Møller– Plesset Perturbation Theory," The Journal of Chemical Physics, Vol. 106, No. 12, 1997, pp. 4912-4917
- (14) A. M. Verma, N. Kishore, "DFT Study on Hydrogenation Reaction of Acetaldehyde to Ethanol in Gas and Water Phase," IJRET, Vol. 5, 2016, pp. 53-57
- (15) K. Arai, Solvent Effects in Organic Chemical Reactions, Sangyo Tosho, 1970 (in Japanese)
- (16) D. Weininger, "SMILES, a Chemical Language and Information System. 1. Introduction to Methodology and Encoding Rules," J. Chem. Inf. Comput. Sci., Vol. 28, No. 1, 1988, pp. 31-36
- (17) RDKit: Open-source cheminformatics, https://www.rdkit.org
- * FlowSyn is a registered trademark of Uniqsis Ltd.
- * All other company names, organization names, product names, service names, and logos that appear in this paper are either registered trademarks or trademarks of Yokogawa Electric Corpo